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A new representation is obtained for the isothermal density derivative of g(r). 
It explicitly exhibits the contributions of potential energy terms that are not 
pairwise additive. Consideration of a previously known result shows that one 
has to be rather cautious when using it to obtain information on the triplet 
correlation function from the well-known relation between this function and 
Og/~p, due to large cancellations which take place at high density. By integrating 
with respect to density the new representation for ~g/~p, after a suitable closure 
has been introduced, we obtain an augmented Percus Yevick equation for hard 
spheres which has full thermodynamic consistency. The equation of state and 
the cavity function y(r) are very accurate at low density and considerably 
improve PY at medium density, so that this appears to be a useful new 
approach to the theory of fluids, but it is necessary to improve the closure in 
order to treat a dense fluid. 

KEY WORDS: Hard spheres; pair correlation function; triplet correlation 
function; Percus-Yevick. 

1. I N T R O D U C T I O N  

In  this p a p e r  we first de r ive  and  e x a m i n e  a genera l  iden t i ty  re la t ing  the 

func t i ona l  de r iva t i ve  of  the pa i r  d i s t r i bu t i on  func t i on  of  a m o l e c u l a r  sys tem 

wi th  respect  to loca l  dens i ty  6g(12) /6p (3 )  a n d  the  t r i p l e t  d i s t r i bu t i on  

func t i on  g(123) .  W e  then  use the  iden t i ty  to o b t a i n  an  e q u a t i o n  re l a t ing  the  

dens i ty  de r i va t i ve  c~g( 12)/c~p and  an  in teg ra l  i n v o l v i n g  g(123) .  T h e  e q u a t i o n  
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yields a representation for Og(12)/Op that suggests a new integral equation 
for an approximate g(12) which we investigate for a uniform system of 
hard spheres. 

The identity relating 6g(12)/6p(3) and g(123) has been used before by 
van Beijeren/1/ in investigating the time-dependent properties of a hard- 
sphere system, but we have not found its derivation in the open literature. 
Since it is a useful and fundamental result in the functional calculus of 
statistical mechanics, we prove it, and then give it a graph-theoretic 
interpretation which helps illuminate its structure. Taking the volume 
integral of both sides of the identity yields a relation between the density 
derivative c3g(12)/~?p and an integral involving g(123). A form of this 
relation has been known for many years. It was derived by Buff and Brout 
and used by them as a test of the Kirkwood superposition approxima- 
t ion/  2) The relation was thereafter rediscovered by Schofield (3) (and 
restudied in connection with the superposition approximation by 
Hutchinson(4~). It has been subsequently discussed and used by various 
workers; in particular, Ravech6 and Mountain have considered it in 
detail. (s) 

We focus on a representation of ~?g(12)/~3p different from that used by 
earlier workers, which our analysis suggests may be fruitful new starting 
point for approximation, and we explore its use for the case of a hard- 
sphere fluid. 

In Section 2, we derive our identity. In Section 3, we rederive and 
analyze it using cluster expansions that include the contributions of 
intrinsic n-body potential energy terms for all n. In Section 4, we integrate 
over volume to get the Buff-Brout expression for ~g(12)/Op in terms of 
g(123) as well as a variant of that expression. In Section 5, we use our 
results to motivate new integral equations to yield approximate radial 
distribution functions for a hard-sphere fluid. In Section 6, we consider 
some quantitative results of the closures. We summarize some conclusions 
in Section 7. 

2. AN IDENTITY IN THE F U N C T I O N A L  CALCULUS 

In the grand ensemble, the grand partition function Z is a fundamental 
generating functional. In particular, one generates the probability densities 
Pn( "'" n) by differentiating Z with respect to z(i), where z(i) = ze -~~176 z is 
activity, and ~o1(i) is external field, 

i = 1  i = 1  
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It is convenient to work with the distribution functions gn(1-., n), where 

pl(i) gn(1 . . -n )=  p,,(1-..n) (2.2) 
i = 1  

We shall be principally interested here in pl(i), p2(12), p3(123), u2(12)= 
pz(12)-pa(1) p1(2), g2(12), and h2(12)= g2(12)-1.  For convenience, we 
shall drop the subscripts on all these functions and write simply p(1), 
p(12), p(123), u(12), g(12), and h(12). We shall also use the delta function 
6(12). For convenience we also introduce the symbol 

H(12/3 ) = 6g( 12)/6p(3 ) (2.3) 

Our strategy will be to use the chain rule 

z(3) 6p(12) 
6z(3) =z(3) f d(4) 6 ~ ?  6p(4) (2.4) opt'~ 6z(3) 

The left-hand side can be expressed in terms of g(123), g(12), and p(i). The 
right-hand side can be expressed in terms of H(12/3), h(0), and p(i). We 
start with the left-hand side and use (2.1) to represent p(12) and to identify 
p(123). We find 

@(12) 
z(3) - -  - p(123) - p(12) p(3) + p(12) 6(23) + p(12) 6(13) 6z(3) 

= p(1) p(2) p(3)[g(123) - g(12)] + p(12) 6(23) + p(12) 6(13) 

(2.5) 
In analyzing the right-hand side of (2.4), we use (2.1) to reexpress 
z(3)[6p(4)/az(3)]: 

@(4) 
z(3) ~ = u(34) + p(3) 6(34) (2.6) 

We use (2.1) to reexpress ap(12)/6p(3): 
6p(12)~ ~,, 6 g ( 1 2 ) . ~  

= p t t )  p(2) 6 - ~ - ~ +  [6(24)+6(14)] (2.7) 

Using (2.6) and (2.7) with (2.3), we have 

z(3)f  d(4) 6p(12) 6p(4) 
) 6p(4) 6z(3) 

IH(12/3) + f d(4) H(12/4) p(4) h(34) p(1) p(2) p(3) 

+g(lZ)h(Z3)+g(lZ)h(13)]+p(12)[6(23)+6(13)] (2.8) 
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Equating the right-hand sides of (2.5) and (2.8), we find 

g(123) -g(12)[-1 + h(13) + h(23)] 

= H(12/3) + f d(4) H(12/4) p(4) h(34) (2.9) 

This is our sought identity. It is worth noting several several alternative 
ways of expressing it. First of all, the left-hand side can be reexpressed by 
using g(o') = h(ij') + 1: 

g(123) - g(12)[1 + h(13) + h(23)] 

= g(123) - g(12) g(13) g(23) + g(12) h(13) h(23) (2.10) 

Thus, under the Kirkwood superposition approximation 

g(123) = g(12) g(23) g(13) (2.11) 

the right-hand side becomes simply g(12)h(13)h(23). Second, it is some- 
times natural and convenient to consider (2.9) divided by g(12). On the 
right-hand side, this is equivalent to replacing the H(12/i), which is 
6g(12)/6p(i), by 6 ln g(12)/bp(i), which we shall denote as G~i(12/i): 

G13(12/3) = 6 In g(12 )/bp( 3 ) (2.12) 

The superscript I3 refers to "irreducibility in the 3 direction" in a sense that 
is associated with a cluster-expansion representation of (2.12) considered in 
the next section. On the left-hand side of (2.9), division by g(12) leaves us 
with a function we shall denote as G(12/3), 

G(12/3) = g(123 )/g(12 ) - 1 - h(13) - h(23) (2.13) 

or, equivalently, 

G(12/3) = g(123 )/g(12 ) - g(13) g(23) + h(13) h(23) (2.14) 

In the superposition approximation 

G(12/3) = h(13) h(23) (2.15) 

In the notation just introduced, our identity is 

G(12/3) = G/3(12/3) + f d(4) G14(12/4) p(4) h(34) (2.16) 
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3. C L U S T E R - E X P A N S I O N  A N A L Y S I S  

One gains additional insight into Eq. (2.16) by considering the 
p-vertex, h-bond cluster expansions of the functions that appear in it. By 
comparing the p-vertex, h-bond expansion of G(12/3) with that of 
61ng(12)/6p(3), we can in fact rederive (2.16) with Gt3(12/3) given by 
(2.12). The derivation goes through whether we have intrinsic n-body 
potential terms, r ... n), n ~> 3, or not. If we do, then the expansions we 
consider will have fn-faces, n >~ 3, as well as p-vertices and h-bonds, where 
the fn-faces represent the functions exp(-f l~0n)-1.  The necessary expan- 
sions are given in Stell ~6) and we follow the terminology and conventions 
of that reference, including its symmetry-number convention. From the 
expansion of g(123) given there we have immediately 

G(12/3)=h(13)h(23)+the sum of all distinct connected graphs with 
three white 1-circles labeled 1, 2, and 3, respectively, at least one black 
p-circles, some or no h-bonds, and some or no fs-faces, s/> 3, such that 
the graphs are free of articulation circles and articulation pairs of circles 
and there is no bond between the circles labeled 1 and 2 (3.1) 

Among these graphs, there will be those for which only a single h-bond and 
no f s -  1 faces are incident upon the white circle labeled 3. Thus the 
representation of the sum of these graphs can be reduced to a convolution 
at a p-circle of a three-point function A(12/4) and h(43), 

= f d(4) A(12/4) p(4) h(43) (3.2) CR3(12/3) 

Let us denote as G13(12/3) the sum of all the rest of the graphs in 
G(12/3) that cannot be so reduced. They can be characterized by an extra 
connectedness condition to give 

G13(12/3 ) = h(13) h(23) + the sum of graphs in (3.1) such that there are 
at least two paths along bonds or fs-face edges from the circle labeled 3 
to the circles labeled 1 and 2, respectively, that share no circles except the 
circle labeled 3 (3.3) 

This is clearly the same sum that characterizes the A(12/3) of Eq. (3.2), so 
we have 

G(12/3) = G'3(12/3) + GR3(12/3) (3.4a) 

= f d(4) GI4(12/4) p(4) h(43) (3.4b) GR3(12/3) 

We now show that G13(12/3) is also just the sum of graphs in the 
p-vertex, h-bond, fs-face, s~> 3, expansion of 6 ln g(12)/bp(3), i.e., we shall 
demonstrate Eq. (2.12). 
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To do this, we first consider  the p-vertex, fs-face, s >~ 2, expans ion  of 
the 2-part icle  po ten t ia l  of mean  force, or  equivalent ly  In g(12). We  have 

In g(12)= -fl~b2(12 ) + the sum of all distinct connected graphs with two 
white 1-circles labeled 1 and 2, respectively, at least one black p-circle, 
and fs faces, s/> 2, such that the graphs are free of articulation circles and 
free of a bond between the labeled circles, which are not an articulation 
pair of circles (3.5) 

We note  tha t  the f reedom from ar t icu la t ion  circles implies that  there 
are at  least  two pa ths  a long f~-face edges from any black circle to the 
circles labeled 1 and  2, respectively, that  share no circles except the 
terminal  b lack  circle. W h e n  each black circle becomes a while circle labeled 
3, upon  funct ional  different iat ion with respect  to p(3),  this connectedness  
p rope r ty  persists. We have 

6 In g(12)/@(3)=the sum of all distinct connected graphs with three 
white 1-circles labeled 1, 2, and 3, respectively, some or no black 
p-circles, and fs-faces, s >~ 2, such that the graphs are free of articulation 
circles and free of a bond between the circles labeled 1 and 2, 
respectively, which are not an articfilation pair of circles; moreover, there 
are at least two paths along fs-face edges from the circle labeled 3 to the 
circles labeled 1 and 2, respectively, that share no circles except the circle 
labeled 3. (3.6) 

Final ly ,  we can reexpress this sum by e l iminat ing f2-faces (i.e., M a y e r  
f - b o n d s )  in favor  of h -bonds  by add ing  the s t ipula t ion  that  there are no 
a r t icu la t ion  pairs  of circles: 

& In g(12)/~p(3)= the sum of (3.6) with h-bonds replacing f2-faces and 
the added condition that there are no articulation pairs of circles (3.7) 

C o m p a r i n g  (3.7) and  (3.3), we arrive at  (2.12). 
The mos t  i m p o r t a n t  an t ic ipa ted  affect of intr insic or  excess n -body  

terms in the poten t ia l  energy, n t> 3, will be the direct  effect of the 3-body  
term which represents  a p - independen t  con t r ibu t ion  to g(123). One has (6) 

g(123) = g(12) g(13) g(23) e3(123) + O(p) 

where O(p) signifies a te rm of o rder  p and 

e3(123) = exp{ -/3(p3(123) } = f 3 ( 1 2 3 )  + 1 

(3.8) 

(3.9) 

Here  q03(123 ) is the con t r ibu t ion  to the potent ia l  energy 43(123 ) of three 
part icles  excess to the sum of  pa i r  potent ia ls  

43(123)  = q9(12) + q)(13) + q~(23) + ,o3(123) (3.10) 
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From (3.8) and (2.13) it folows immediately that when ~03r 
h(13) h(23) is not the only term of zeroth order in p. Instead one has 

G(12/3)=h(13)h(23)+g(13)g(23)f3(123)+O(p ) (3.11) 

Equation (3.11) also immediately follows from Eq. (3.1). 

4. EQUATION FOR ~ In g(12)/~p 

For a uniform system [i.e., when p(i)= p] we can immediately obtain 
an equation involving 0 In g(12)/Op by applying S d(3)p(3) to both sides of 
(2.16) and noting that, since G13(12/3)= 6 in g(12)/6p(3), 

0 In g(12) 
P 3p - I d(3) p(3) G'3(12/3) (4.1) 

We obtain from (2.16) 

f d(3) p(31 G(12/3) = p 

o r  

0 In g(12) 0 In g(12) 
+ [ s ( 0 ) -  1]p 0p ~p 

t" 0 In g(12) 
j d(3) p(3) G(12/3) = S(O)p (4.2) 

0p 

Here S(0), the structure factor S(k) associated with g(12) evaluated at 
k = 0, is a dimensionless measure of isothermal compressibility that comes 
out of (2.16) upon the integration over h(34): 

f, 
S(0) = 1 + ] d(5) p(4) h(34) = (Op/3#)/flp (4.3) 

When all potentials in the problem only depend upon the distances 
between particle centers, rp(12), g(12), and h(12) are often written as ~p(r), 
g(r), and h(r), where r ,=  It1-r21, and we shall follow this practice where 
it is convenient to do so. It is also natural to separate the convolution 
between the two h-functions appearing in the integral over G(12/3) in (4.2) 
from the rest of the expression and write 

where 

S(O )p • In g(r)/Op = ph | h + F(r) 

h | h = f d(3) h(13) h(32) 

F(r) = p f d(3) [g(123)/g(12) -g (13)  g(23)] 

(4.4) 

(4.5) 

(4.6) 

Equation (4.4) is the relation considered in refs. 2-5. 
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From our discussion at the end of the last section we see that in the 
absence of intrinsic n-body potential terms, n ~> 3, F(r) is of order p2. In the 
presence of such terms we have instead 

F(r) = p f d(3) g(13) g(23) f3(123) + O(p 2) (4.7) 

For  dense fluids, S (0 )~  1 and a numerical comparison of the three 
terms in (4.4) shows that the first is small in magnitude compared to the 
two on the right-hand side, which are of opposite sign and similar 
magnitude. Thus, approximating F(r) is not a felicitous procedure for 
obtaining an approximate ~3 In g(r)/c~p via (4.4). It seems more promising to 
write 

In g(r) 
p - -  - ph | h + Fi~r(r) (4.8) 

Op 

where Firr(r ) is defined directly in terms of G I3, 

f d(3 ) t9(3 ) 613(12/3) = ph @ h + Firr(F) (4.9) 

Here Firr(r) is thought of as being directly defined as a functional of h by 
the h-bond, fs-face representation of GZ3(12/3) given in Section 3. That is, 

Firr(r ) = p f d(3) g(13) g(23) f3(123) 

/e the sum of all distinct connected graphs with three 
| white 1-cirles labeled 1, 2, 3, resp., at least one black 
| p-circle, some or no h-bonds and fs-faces, s/> 3, 

] such that the graphs are free of articulation circles 
J [ d ( 3 ) ~  and articulation pairs of circles and have at least (4.10) +p  

| two paths along bonds and/or fs-face edges from the 
circle labeled 3 to circles labeled 1 and 2, resp., that 

[ share no circles except the circle labeled 3; there is 
k .  no h-bond between the circles labeled 1 and 2 

We explore the use of (4.8) for a hard-sphere system in the remainder 
of this paper. 

5. FROM THE I S O T H E R M A L  DENSITY DERIVATIVE OF g(r) TO 
A THEORY FOR THE RADIAL D ISTRIBUTION FUNCTION 

The two relations (4.4) and (4.8) express the isothermal density 
derivative of g(r) in term of the sum of the two terms; the first is the 
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convolution of h(r) with itself and the second is what we have called, 
respectively, F(r) and Firr(r). Both F(r) and Firr(r) are functionals just of 
h(r), so that if these functions are approximated by an explicit functional 
of h(r), one could integrate those equations with respect to density starting 
from the initial condition 

g(r, p = 0) = exp[ - fl~b(r) ] (5.1) 

In this way we would obtain an approach to the theory of g(r) with the 
remarkable property that the interatomic potential appears only in the 
initial condition. Actually, this would provide at the same time a theory of 
the cavity function 

y(r) = g(r) exp[fl~b(r)] (5.2) 

since c~ In g(r)/t?p = • In y(r)/t?p. 
For instance, if the three-body correlation function g~3)(r 1, r2, r3) is 

approximated by the Kirkwood superposition approximation, the function 
F(r) is identically zero and the resulting equation for g(r) is 

S(0) ~ In g(r)/~?p = h | h (5.3) 

If we attempt to integrate this equation, we find very poor results and we 
can easily understand the reason. We have already noted that at high 
density where S (0 )~  1 there is an almost complete cancellation between 
h |  and some contributions to F(r) due to triplet correlations in excess 
of superposition, so that only a very accurate approximation for g~3~ can 
lead to a useful equation for g(r). This compensation is built into the 
structure of the other relation (4~8) involving Firr(r), so that this appears 
to be a much better starting point. 

This new correlation function Fi~(r) has a well-defined cluster expan- 
sion as well as an expression in terms of functional differentiation, as 
shown in the previous section, but a clear physical interpretation of Fi~r(r ) 
is still missing. However, if g(r) is known at different densities for a given 
fl~b, the relation (4.8) can be used to actually compute Fi~r(r) and get some 
insight into this function. 

We consider the case of hard spheres of diameter •. The PY 
equation (7) is rather accurate for this interaction and we have computed 
Firr(r) within this approximation from the analytical solution (8~ of the PY 
equation. For  details of the computation see the Appendix. The Verlet- 
Weis (9) (VW) form for g(r) gives an empirical rdf which is an accurate 
representation of the results of simulation computation at all densities. Also 
from the VW form, extended inside the core by Grundke and Henderson,(l~ 
we have computed Firr(r) and this result should represent an essentially 
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exact representation of Firr(r ) for hard spheres. The two Firr(r ) obtained 
from the VW and the PY g(r) have a rather similar behavior at all densities 

V W  P Y  and in Fig. 1 we show Fi vw and the difference Fir r - F i r  r at the density 
p~r3= 0.9. The FVW(r) is large and positive inside the core and then it 
oscillates around zero beyond the core; FierY(r) outside the core is rather 
similar to F vw, but the oscillations have a slightly different amplitude. 
Around the core diameter the deviation between Fi~ ~ and F vw becomes 
significantly larger until the two functions have a completely different 
behavior below a distance of order a/2. The Fi~ Y first has a maximum and 
then becomes negative as r--+ 0, whereas F vw becomes very large and 
positive at small r and has only a shallow maximum at short distance. This 
discrepancy is a consequence of the known inadequacy of the PY equation 
inside the core. 

~\ x i0 -~ 

- 2  - 

0 0.5 1 

' ' ' ' 1 ' ' ' ' 1 ' ' ' ' 1 ' ' '  

/ X / 
/ 

] 

/ 

\ /  

I I I , I , l l I I I I I l ] , , l , 

1.5 2 2.5 

r / e  

Fig. 1. Plot of Pir "~w corresponding to the Verlet-Weis form of g ( - - - ) ,  of the difference 
FirrVW - FiPY(--), and of 0 = h - c corresponding to the Verlat-Weis g (-.-)  at density pea = 0.9. 
For  r < ~r the functions are reduced by a factor 10. 
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Our strategy to improve upon the PY equation is the following. We 
write the basic equation (4.8) in the form 

PY 
01ny( r )  h|  Firr (r) 

0p p 

where 

+A(r) (5.4) 

t'Y ~3 In yPY(r) phPV @ h p  Y 
Fi r  r = p (5 .5)  #p 

is Fi r r ( r  ) in the PY approximation at the same density (and temperature if 
the pair interaction is not the hard-sphere one) of the problem at hand. We 
model the correction term to PY: 

Fi r r ( r  ) PY Fir  r ( r )  A(r) - - -  (5.6) 
P P 

in terms of correlation functions of the system and here we can use ther- 
modynamic consistency conditions as constraints on parameters introduced 
to represent A(r). It is clear that in (5.4)-(5.6) we could use in place of Fi~ Y 
the approximate form corresponding to some other scheme like HNC if 
this is more accurate then PY. 

In this paper we study only the hard-sphere system, so that the PY 
approximation appears to be the most appropriate starting point. It is clear 
that if we put A ( r ) = 0  in Eq. (5.4), the integration of that equation gives 
back yPV(r). We consider three different closures for A(r). 

Closure  I. We have noticed that outside the core the "exact" Fi vw 
differs from Fir PY mainly for an amplitude factor and this suggests the 
following closure: 

AI(t) = 7 FiPrY(r) (5.7) 
P 

This closure will give very poor results inside the core, but it is a property 
of Eq. (5.4) that y(r) in the range r > a does not depend on the value taken 
by y(r) for r < a, so that this approximation might be of some value for 
g(r). The parameter 7 is implicitly fixed by the requirement that the 
equation of state obtained by the virial route be the same as that give by 
the compressibility route, i.e., 

S(O)=kBT//(~p), pv=kBTp[l§ (5.8) 

This condition is imposed at each density so that V will be density 
dependent. 
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C l o s u r e  I I .  For hard spheres additional constraints derive from 
zero-distance theorems for y(r), but in order to use them, A(r) at short 

pv 
distance must correct the wrong behavior of Fi r  r . As one can see from 
Fig. 1, the difference F vw -Fier~ inside the core is rather similar to the 
function 

O(r) = ph | e = h(r) - c(r) (5.9) 

where c(r) is the Ornstein-Zernike (OZ) direct correlation function and in 
(5.9) we have used the OZ relation in writing the last equality. This 
suggests that we write A(r) in terms of O(r) and, in fact, one can give some 
support to this ansatz from an analysis of the diagrammatic expansion of 
A(r). However, this cannot be correct at large distance because the oscilla- 
tions of Firr and of 0 around zero are not in phase. Therefore, we introduce 
a damping factor and our closure II reads 

An(r) = AO(r) exp[ - (r/ro) 2 ] (5.10) 

and the two parameters A and ro are determined by the consistency 
requirement (5.8) and by the constraint (H) 

y (O)=exp (~ex )=exp  {fpo dP E s - l ( O ) -  l (5.11) 

where /~ex is the excess chemical potential. It is clear that with this ansatz 
we cannot expect to improve the PY equation at distances beyond the 
range ro. 

C l o s u r e  I I I .  In order to make use of the additional theorem (12) 

d lndrY(r) r = 0 = - -Tcpo '2y(o ' )  ( 5 . 1 2 )  

we have considered a three-parameter closure modeled on closures I and 
II, i.e., we write 

P Y  8] ,513, 

The choice of the power 8 in the damping factor is motivated by the low- 
density behavior of the equation als discussed in the next section. In A In 
also the Fi~ y has a damping factor and the motivation is that is order to 
satisfy the two zero-distance constraints (5.11) and (5.12) the value of 7 
turns out to be substantially different from zero, so that the resulting large- 
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distance behavior of h(r) is unacceptable unless Fi PY is also damped. The 
three parameters of this closure (7, A, and r0) are determined by conditions 
(5.8), (5.11), and (5.12). 

Taking into account Eq. (5.4), we can write the consistency equations 
(5.8), (5.11), and (5.12) in the explicit form 

Fir r (o-) 
S(O)= 1+  pa3y(a)+-~-a3p2y(a) (h| ~-A(a) 

P 
(5.14) 

(h| Firr (0) + A(0) = -  - 1 (5.15) 
P P 

FPY'(0J [ 1 ( h @ h ) ; +  . . . . .  +A,(O)=_Tza2y(a)_~zpa2y(a) (h@h)o+FiPVr (a) +A(a) 
P P 

(5.16) 

where a prime indicates d/dr and (h| indicates the convolution for 
external argument equal to r. 

For  closure I we just use (5.14) with the appropriate form for A, for 
closure II Eqs. (5.14), and (5.15) are used, and for closure III all three 
equations are used. Notice also that all correlation functions in 
(5.10)-(5.16), such as 0, y, and h, are not the PY functions, but are the 
ones corresponding to the unknown y for which we solve Eq. (5.4). O(r) is 
related to y(r) via the OZ relation in k space. 

6. RESULTS FOR H A R D  SPHERES 

First we study the low-density behavior of Eq. (5.4) wityh the closures 
introduced in the previous section. The low-order terms of the virial 
expansion of y(r), 

y ( r )  = yo ( r )  + p o 3 y l ( r )  --k p2~76y2(r ) -t- . . .  (6.1) 

can be obtained in a straightforward way by expanding both members of 
(5.4) and of (5.14)-(5.16) in power series of p. The Fi r  r is a quantity of 
order p2, so that Yo and Yl given by (5.3) are exact for any approximation 
for A(r). Deviations appear in Y2 because Fi~ Y is not exact already at lowest 
order, i.e., at order p2 (see Fig. 2). Keeping in mind that O(r) starts with a 
linear term in density, it turns out that the parameters contained in 
the closures (5.7), (5.10), and (5.13) have a nonzero limit at p = 0 .  
Correspondingly, the second and third viral coefficients of the equation of 
state are exact, but the fourth is not and the value depends on the closure, 
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(a) 

Fig. 2. 

2 7 +2N 
(b) 

C o n t r i b u t i o n s  of lowest  o r d e r  in dens i ty  to  (a)  F ~  a n d  (b) the exac t  Firr, in t e rms  

of  the  f - b o n d ,  p-circle  r ep resen ta t ion .  

as one can see in Table I. For all three closures the virial and the com- 
pressibility route give the same value for B 4 due to the constraint (5.8). B 4 

of closure I is about halfway between the virial and the compressibility PY 
values. The value of B 4 for closures II and III depends on the power con- 
tained in the damping factor in (5.10) and in (5.13), respectively, and the 
range of variations of the resulting B 4 brackets the exact value, so that for 
both closures there is a power which gives the exact B 4. The powers 2 and 
8 used for closures II and III, respectively, are the integers which give the 
best result for B 4. Therefore the fact that closure II gives a slightly better 
value for B 4 than closure III is not significant. 

With regard to the correlation function, closure I gives only a limited 
improvement for yz(r) outside the core compared to PY. On the other 
hand, closure II gives a significant improvement at all distances and inside 
the core the largest deviation is of order of 0.6 (see Fig. 3). For  closure III 
there is a dramatic improvement; Y2 can be considered to be almost exact 
since the deviation from the exact y:  is smaller than 0.001 at all distances 
and, moreover, y2(0) and y~(0) are exact. We conclude that closure III is 
the best of the three at low density. 

We have integrated numerically Eq. (5.4) and the details of the com- 
putation are given in the Appendix. We have performed various tests on 
the accuracy of the computation, such as reversing the direction of integra- 

Table  I. Fourth  Vi r ia l  C o e f f i c i e n t  B 4 in Uni ts  o f  B z = 2 / 3  n a  3 a 

E x a c t  A i A ii A m CS PY~ PYc 

B4/B~ 0.28695 0 .27456 0.28689 0.28681 0.28125 0.25000 0.29687 

7 - -  0.059 - -  ~0.643 - -  - -  - -  

A - -  - -  2.225 2.057 - -  - -  - -  

rofiZ - -  - -  0.675 1.371 - -  - -  - -  

a E x a c t  results ,  p resen t  a p p r o x i m a t i o n s  labeled  by  the c losure  A i, a n d  C a r n a h a n - S t a r l i n g  a n d  

P Y  (virial a n d  compress ib i l i ty  rou t e )  results  a re  given.  The  ze ro -dens i ty  limit of  the  

p a r a m e t e r s  ~, A, a n d  r 0 for  the  three  c losures  is a lso  shown.  
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Fig. 3. y2(r) of hard spheres. Upper part: exact ~12) (.-.) and PY (---). Lower part: difference 
between the exact yeX and y2 given by closure III (--), by closure II (---), and by PY (---). 
The two last differences are reduced by a factor of 50. 

tion in p or recovering the PY g(r )  when A( r )=  0. Due to the finite grid 
of integration in p, the consistency conditions (5.8), (5.11), and (5.12) are 
not exactly satisfied by the computed y ( r ) ,  but the deviations between the 
two members of these equations remain below the 0.2% level at all 
densities and we estimate that accuracy in the excess compressibility factor 
Z e = Z -  1 = flp/p - 1 is better than 1%. 

In Fig. 4 we show our results for the compressibility factor in the form 
(Z f f w -  Z e ) / Z  ffw, where Ze Ew is the Pad6 approximant  of Erpenbeck and 
Wood ~13) obtained from a fit of simulation data. In the figure the PY virial 
results as well as the Carnahan Starling (14) (CS) equation of state are 
shown. The equation of state for closure I is an improvement with respect 
to PYv, but this improvement becomes marginal at a density of order 
0.54).6. Closures II and III  give improved results for Z; both of them are 
better than CS at low density since B 4 is closer to the exact result and 
closure I I I  is better than CS up to a density of order of 0.25. At higher 
density the result is significantly better than PYv but much less than CS. 
We find that the consistency equations (5.14)-(5.16) do not have a solution 
for both closures II  and III  above a certain density; this is of order of 0.55 

8 2 2 / 6 4 / 3 - 4 - 2  
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Erpenbeck and Wood Pad6 approximant c13) for Percus-Yevick virial (PYv), Carnahan 
Starling (CS), and for closures I, II, and III. 

for closure III. We believe that this is because the closures we have 
considered are not flexible enough to model Firr at high density. 

Next we consider the results for y(r); the comparison with the VW 
y(r)  is shown in Fig. 5 at pa 3 = 0.5. Inside the core both closures II  and III  
give a large improvement with respect to the PY result. Improved results 
are obtained also in the region immediately outside the core, but a larger 
distances the results become very close to PY. This is a consequence of the 
presence of the damping factor in these closures. It is interesting to consider 
the behavior of the direct correlation function given by the present 
theory; the result at pa  3 =0.5 is shown in Fig. 6. Contrary to PY, c(r) 
corresponding to our closures has a tail outside the core and this tail is 
significantly large than the VW one. 

From these results we conclude that the closures we have considered 
for Firr are appropr ia te  at low density and in particular closure III  gives 
excellent results. However, these closures fail to capture some essential 
feature of F~r~ starting from an intermediate density and the quality of the 
results deteriorates at higher density. 
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7. D I S C U S S I O N  

We have analyzed two relations for the isothermal density derivative 
of g(r) of a fluid. The first is the well-known relation between Og/(?p and a 
functional F(r12]g3) of the triplet correlation function. Our analysis shows 
that one has to be rather careful in extracting information on the triplet 
correlation function from Og/~p. At high density, exactly where one is most 
interested in this problem, S(0) is very small and there is a very large 
cancellation between the convolution term and the term F(r) [Eq. (4.4)] 
which contains the information on g3- On the experimental side, this 
implies tha t  when using (s'15~ relation (4.4) to obtain evidence for triplet 
correlations in excess of superposition, the convolution term has to be 
evaluated very carefully and, on the other hand, most of the information 
on g3 given by F(r) is just that due to the lowest-order Abe-Stetl contribu- 
tion. On the theoretical side, our analysis suggests that it will be difficult 
to develop a useful theory for g(r) starting from the equation (4.4) for 
c~g/~p coupled with a suitable closure for g3 because it would be necessary 
to devise an exceedingly accurate representation of g3 in terms of the rdf. 
All this is due to a remarkable cancellation between terms of neighboring 
order in the cluster expansion in h bonds of F(rl g3) ,  

The new relation (4.8) we obtain for Og/Op does not involve the 
isothermal compressibility and the proof on the basis of the diagrammatic 
expansion makes clear that the cancellations mentioned above are fully 
taken into account. Now in place of F(rl g3) a new correlation function, 
Firr(r), appears which unfortunately we have not been able to relate in 
closed form to known correlation functions. In any case this new relation 
for gg/Op appears as a better starting point to obtain a theory of g(r) by 
using a suitable approximation for Firr. 

In the second part of the paper we have shown that indeed it is 
possible to construct a theory of g(r) starting from this new relation for 
~?g/c~p. We have studied hard spheres and Firr has been written as the PY 
value plus a correction term based on a suitable closure: In this way we 
obtain an augmented PY theory in which full thermodynamic consistency 
is enforced. In the low-density limit this approach is very accurate and the 
result is essentially exact for the most elaborate closure we have considered. 
The equation of state up to density /00 -3 = 0.25 is superior to the celebrated 
Carnahan-Starling one. In the intermediate density range 0.254).50 our 
approach represents an improvement over PY and, in particular, the cavity 
function y(r) inside the core is very accurate. At still higher density none 
of the closures we have considered is adequate. 

In conclusion we have shown that it is possible to build a theory of 
g(r) and of the cavity function y(r) starting from a relation for its 
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isothermal density derivative. This is just the beginning and we have to 
learn much more about the correlation function Firr before we can obtain 
useful results at high density, but our excellent results at low to medium 
density suggest that this is a new useful approach to the theory of fluids. 

A P P E N D I X  

Equation (5.4) is reduced to a finite system of nonlinear 
inhomogeneous differential equations of first order for the unknown 
y(ri, p), having discretized r space. We have used the step size 6(r/0-)= 
5 x 10 3 with r . . . .  = 820-. The fourth-order Runge-Kutta method (16) has 
been used to solve the system with a step size O(po "3) = 10 -3. We started 
the integration from a very low density (0.01) where the virial expansion 
can be used in order to obtain the initial condition. 

The convolutions appearing in (5.4), (5.5), and (5.9) have been 
computed through the convolution theorem and using a fast Fourier trans- 
form routine. For  an accurate evaluation of the Fourier coefficients of the 
discontinuous function h(r) we have considered the function 

l ( r )=  { - 1  r<0-  
Lexp[-~(r-0-)] /r  r>0- 

of which we know analytically the Fourier transform 7(k), and the auxiliary 
function H(r)= h(r)-  l(r). The parameters e and L are such that H(r) and 
its first derivative are continuous at r = 0-. The final result for h(k) is given 
adding T(k) to the numerical Fourier transform of H(r). 

In order to construct FiPrr Y we need gVV and OgVV/@. Starting from the 
analytic solution (8~ of PY, gPY(r) has been computed exactly up to r = 100- 
with the method of Smith and Henderson. (17) Beyond this distance gPY has 
been represented by its asymptotic behavior obtained from the contribu- 
tion of the pair of poles (ti, t*) of the Laplace representation of rgPY(r) 
which are closest to the imaginary axis. In the range 90- to 100- the two 
representations of gPY match each other perfectly well in the range of 
density we have considered here. The density derivative of gVY has been 
computed with a Newton three-step formula with increment 5 x 10 -5. 

During the integration in p the values of 7, A, and r o have been 
calculated solving at each step the system (5.14)-(5.16) at the values of the 
density required by the Runge-Kutta method. 
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